There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(x + 1)}{({x}^{2} - 4)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{(x^{2} - 4)} + \frac{1}{(x^{2} - 4)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{(x^{2} - 4)} + \frac{1}{(x^{2} - 4)}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} - 4)^{2}})x + \frac{1}{(x^{2} - 4)} + (\frac{-(2x + 0)}{(x^{2} - 4)^{2}})\\=&\frac{-2x^{2}}{(x^{2} - 4)^{2}} - \frac{2x}{(x^{2} - 4)^{2}} + \frac{1}{(x^{2} - 4)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2x^{2}}{(x^{2} - 4)^{2}} - \frac{2x}{(x^{2} - 4)^{2}} + \frac{1}{(x^{2} - 4)}\right)}{dx}\\=&-2(\frac{-2(2x + 0)}{(x^{2} - 4)^{3}})x^{2} - \frac{2*2x}{(x^{2} - 4)^{2}} - 2(\frac{-2(2x + 0)}{(x^{2} - 4)^{3}})x - \frac{2}{(x^{2} - 4)^{2}} + (\frac{-(2x + 0)}{(x^{2} - 4)^{2}})\\=&\frac{8x^{3}}{(x^{2} - 4)^{3}} - \frac{6x}{(x^{2} - 4)^{2}} + \frac{8x^{2}}{(x^{2} - 4)^{3}} - \frac{2}{(x^{2} - 4)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !