Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{({x}^{2})}{({x}^{2} + 3)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(x^{2} + 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(x^{2} + 3)}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} + 3)^{2}})x^{2} + \frac{2x}{(x^{2} + 3)}\\=&\frac{-2x^{3}}{(x^{2} + 3)^{2}} + \frac{2x}{(x^{2} + 3)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2x^{3}}{(x^{2} + 3)^{2}} + \frac{2x}{(x^{2} + 3)}\right)}{dx}\\=&-2(\frac{-2(2x + 0)}{(x^{2} + 3)^{3}})x^{3} - \frac{2*3x^{2}}{(x^{2} + 3)^{2}} + 2(\frac{-(2x + 0)}{(x^{2} + 3)^{2}})x + \frac{2}{(x^{2} + 3)}\\=&\frac{8x^{4}}{(x^{2} + 3)^{3}} - \frac{10x^{2}}{(x^{2} + 3)^{2}} + \frac{2}{(x^{2} + 3)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return