There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{x{(4 - x)}^{1}}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-1}{2}x^{2} + 2x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-1}{2}x^{2} + 2x\right)}{dx}\\=&\frac{-1}{2}*2x + 2\\=&-x + 2\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -x + 2\right)}{dx}\\=&-1 + 0\\=&-1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !