There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ x{(4 - x)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (-x + 4)^{\frac{1}{2}}x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (-x + 4)^{\frac{1}{2}}x\right)}{dx}\\=&(\frac{\frac{1}{2}(-1 + 0)}{(-x + 4)^{\frac{1}{2}}})x + (-x + 4)^{\frac{1}{2}}\\=&\frac{-x}{2(-x + 4)^{\frac{1}{2}}} + (-x + 4)^{\frac{1}{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-x}{2(-x + 4)^{\frac{1}{2}}} + (-x + 4)^{\frac{1}{2}}\right)}{dx}\\=&\frac{-(\frac{\frac{-1}{2}(-1 + 0)}{(-x + 4)^{\frac{3}{2}}})x}{2} - \frac{1}{2(-x + 4)^{\frac{1}{2}}} + (\frac{\frac{1}{2}(-1 + 0)}{(-x + 4)^{\frac{1}{2}}})\\=&\frac{-x}{4(-x + 4)^{\frac{3}{2}}} - \frac{1}{(-x + 4)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !