Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{50}{(1 + {e}^{(10 - \frac{11}{10}x)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{50}{({e}^{(\frac{-11}{10}x + 10)} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{50}{({e}^{(\frac{-11}{10}x + 10)} + 1)}\right)}{dx}\\=&50(\frac{-(({e}^{(\frac{-11}{10}x + 10)}((\frac{-11}{10} + 0)ln(e) + \frac{(\frac{-11}{10}x + 10)(0)}{(e)})) + 0)}{({e}^{(\frac{-11}{10}x + 10)} + 1)^{2}})\\=&\frac{55{e}^{(\frac{-11}{10}x + 10)}}{({e}^{(\frac{-11}{10}x + 10)} + 1)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return