There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{sqrt({(x - 1)}^{3})}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sqrt(x^{3} - 3x^{2} + 3x - 1)}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sqrt(x^{3} - 3x^{2} + 3x - 1)}{x}\right)}{dx}\\=&\frac{-sqrt(x^{3} - 3x^{2} + 3x - 1)}{x^{2}} + \frac{(3x^{2} - 3*2x + 3 + 0)*\frac{1}{2}}{x(x^{3} - 3x^{2} + 3x - 1)^{\frac{1}{2}}}\\=&\frac{-sqrt(x^{3} - 3x^{2} + 3x - 1)}{x^{2}} + \frac{3x}{2(x^{3} - 3x^{2} + 3x - 1)^{\frac{1}{2}}} + \frac{3}{2(x^{3} - 3x^{2} + 3x - 1)^{\frac{1}{2}}x} - \frac{3}{(x^{3} - 3x^{2} + 3x - 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !