There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(4{x}^{6} - 5{x}^{4})}{({({x}^{2} - 1)}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{4x^{6}}{(x^{2} - 1)^{2}} - \frac{5x^{4}}{(x^{2} - 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{4x^{6}}{(x^{2} - 1)^{2}} - \frac{5x^{4}}{(x^{2} - 1)^{2}}\right)}{dx}\\=&4(\frac{-2(2x + 0)}{(x^{2} - 1)^{3}})x^{6} + \frac{4*6x^{5}}{(x^{2} - 1)^{2}} - 5(\frac{-2(2x + 0)}{(x^{2} - 1)^{3}})x^{4} - \frac{5*4x^{3}}{(x^{2} - 1)^{2}}\\=&\frac{-16x^{7}}{(x^{2} - 1)^{3}} + \frac{24x^{5}}{(x^{2} - 1)^{2}} + \frac{20x^{5}}{(x^{2} - 1)^{3}} - \frac{20x^{3}}{(x^{2} - 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !