There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (2x - 5)*3{sqrt(x)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 6xsqrt(x)^{2} - 15sqrt(x)^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 6xsqrt(x)^{2} - 15sqrt(x)^{2}\right)}{dx}\\=&6sqrt(x)^{2} + \frac{6x*2(x)^{\frac{1}{2}}*\frac{1}{2}}{(x)^{\frac{1}{2}}} - \frac{15*2(x)^{\frac{1}{2}}*\frac{1}{2}}{(x)^{\frac{1}{2}}}\\=&6sqrt(x)^{2} + 6x - 15\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !