Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 6 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 6th\ derivative\ of\ function\ \frac{(ln(1 + x))}{(1 + {x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(x + 1)}{(x^{2} + 1)}\\\\ &\color{blue}{The\ 6th\ derivative\ of\ function:} \\=&\frac{46080x^{6}ln(x + 1)}{(x^{2} + 1)^{7}} - \frac{57600x^{4}ln(x + 1)}{(x^{2} + 1)^{6}} - \frac{23040x^{5}}{(x + 1)(x^{2} + 1)^{6}} + \frac{17280x^{2}ln(x + 1)}{(x^{2} + 1)^{5}} + \frac{8448x^{3}}{(x + 1)(x^{2} + 1)^{5}} - \frac{5760x^{4}}{(x + 1)^{2}(x^{2} + 1)^{5}} + \frac{14592x^{3}}{(x^{2} + 1)^{5}(x + 1)} - \frac{720ln(x + 1)}{(x^{2} + 1)^{4}} - \frac{2880x}{(x + 1)(x^{2} + 1)^{4}} + \frac{2304x^{2}}{(x + 1)^{2}(x^{2} + 1)^{4}} - \frac{1440x}{(x^{2} + 1)^{4}(x + 1)} - \frac{1920x^{3}}{(x + 1)^{3}(x^{2} + 1)^{4}} + \frac{2016x^{2}}{(x^{2} + 1)^{4}(x + 1)^{2}} + \frac{640x}{(x + 1)^{3}(x^{2} + 1)^{3}} - \frac{720x^{2}}{(x + 1)^{4}(x^{2} + 1)^{3}} + \frac{320x}{(x^{2} + 1)^{3}(x + 1)^{3}} - \frac{288x}{(x + 1)^{5}(x^{2} + 1)^{2}} + \frac{180}{(x + 1)^{4}(x^{2} + 1)^{2}} - \frac{96}{(x^{2} + 1)^{3}(x + 1)^{2}} - \frac{264}{(x + 1)^{2}(x^{2} + 1)^{3}} - \frac{120}{(x + 1)^{6}(x^{2} + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return