Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of w is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(wwMM)}{(wwMM + Q(W + e))}\ with\ respect\ to\ w:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{M^{2}w^{2}}{(M^{2}w^{2} + QW + Qe)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{M^{2}w^{2}}{(M^{2}w^{2} + QW + Qe)}\right)}{dw}\\=&(\frac{-(M^{2}*2w + 0 + Q*0)}{(M^{2}w^{2} + QW + Qe)^{2}})M^{2}w^{2} + \frac{M^{2}*2w}{(M^{2}w^{2} + QW + Qe)}\\=&\frac{-2M^{4}w^{3}}{(M^{2}w^{2} + QW + Qe)^{2}} + \frac{2M^{2}w}{(M^{2}w^{2} + QW + Qe)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return