Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{0.01(1.19 - 0.02x)}{((1 - 0.01)(1 - 0.01x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{0.0002x}{(-0.01x + 0.0001x + 0.99)} + \frac{0.0119}{(-0.01x + 0.0001x + 0.99)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{0.0002x}{(-0.01x + 0.0001x + 0.99)} + \frac{0.0119}{(-0.01x + 0.0001x + 0.99)}\right)}{dx}\\=& - 0.0002(\frac{-(-0.01 + 0.0001 + 0)}{(-0.01x + 0.0001x + 0.99)^{2}})x - \frac{0.0002}{(-0.01x + 0.0001x + 0.99)} + 0.0119(\frac{-(-0.01 + 0.0001 + 0)}{(-0.01x + 0.0001x + 0.99)^{2}})\\=& - \frac{0.00000198x}{(-0.01x + 0.0001x + 0.99)(-0.01x + 0.0001x + 0.99)} + \frac{0.00011781}{(-0.01x + 0.0001x + 0.99)(-0.01x + 0.0001x + 0.99)} - \frac{0.0002}{(-0.01x + 0.0001x + 0.99)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return