There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (\frac{({d}^{2})({x}^{2})}{d} - 2{\frac{1}{({x}^{2})}}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = dx^{2} - \frac{2}{x^{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( dx^{2} - \frac{2}{x^{4}}\right)}{dx}\\=&d*2x - \frac{2*-4}{x^{5}}\\=&2dx + \frac{8}{x^{5}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2dx + \frac{8}{x^{5}}\right)}{dx}\\=&2d + \frac{8*-5}{x^{6}}\\=&2d - \frac{40}{x^{6}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2d - \frac{40}{x^{6}}\right)}{dx}\\=&0 - \frac{40*-6}{x^{7}}\\=&\frac{240}{x^{7}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{240}{x^{7}}\right)}{dx}\\=&\frac{240*-7}{x^{8}}\\=& - \frac{1680}{x^{8}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !