Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (\frac{dy(2)}{(d({x}^{2}))} - 2{\frac{1}{({x}^{2})}}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2y}{x^{2}} - \frac{2}{x^{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2y}{x^{2}} - \frac{2}{x^{4}}\right)}{dx}\\=&\frac{2y*-2}{x^{3}} - \frac{2*-4}{x^{5}}\\=&\frac{-4y}{x^{3}} + \frac{8}{x^{5}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-4y}{x^{3}} + \frac{8}{x^{5}}\right)}{dx}\\=&\frac{-4y*-3}{x^{4}} + \frac{8*-5}{x^{6}}\\=&\frac{12y}{x^{4}} - \frac{40}{x^{6}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{12y}{x^{4}} - \frac{40}{x^{6}}\right)}{dx}\\=&\frac{12y*-4}{x^{5}} - \frac{40*-6}{x^{7}}\\=&\frac{-48y}{x^{5}} + \frac{240}{x^{7}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-48y}{x^{5}} + \frac{240}{x^{7}}\right)}{dx}\\=&\frac{-48y*-5}{x^{6}} + \frac{240*-7}{x^{8}}\\=&\frac{240y}{x^{6}} - \frac{1680}{x^{8}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return