Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(2({x}^{2}) + 1)}{(4({x}^{4}) + 5)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2x^{2}}{(4x^{4} + 5)} + \frac{1}{(4x^{4} + 5)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2x^{2}}{(4x^{4} + 5)} + \frac{1}{(4x^{4} + 5)}\right)}{dx}\\=&2(\frac{-(4*4x^{3} + 0)}{(4x^{4} + 5)^{2}})x^{2} + \frac{2*2x}{(4x^{4} + 5)} + (\frac{-(4*4x^{3} + 0)}{(4x^{4} + 5)^{2}})\\=&\frac{-32x^{5}}{(4x^{4} + 5)^{2}} + \frac{4x}{(4x^{4} + 5)} - \frac{16x^{3}}{(4x^{4} + 5)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return