There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{(\frac{5}{3})} - {x}^{(\frac{3}{5})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{\frac{5}{3}} - {x}^{\frac{3}{5}}\right)}{dx}\\=&({x}^{\frac{5}{3}}((0)ln(x) + \frac{(\frac{5}{3})(1)}{(x)})) - ({x}^{\frac{3}{5}}((0)ln(x) + \frac{(\frac{3}{5})(1)}{(x)}))\\=&\frac{5x^{\frac{2}{3}}}{3} - \frac{3}{5x^{\frac{2}{5}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !