Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2sqrt(2)x(s - 1 + x) - {(2s + 2x - 3)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2sxsqrt(2) - 2xsqrt(2) + 2x^{2}sqrt(2) - 8sx - 4s^{2} + 12s - 4x^{2} + 12x - 9\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2sxsqrt(2) - 2xsqrt(2) + 2x^{2}sqrt(2) - 8sx - 4s^{2} + 12s - 4x^{2} + 12x - 9\right)}{dx}\\=&2ssqrt(2) + 2sx*0*\frac{1}{2}*2^{\frac{1}{2}} - 2sqrt(2) - 2x*0*\frac{1}{2}*2^{\frac{1}{2}} + 2*2xsqrt(2) + 2x^{2}*0*\frac{1}{2}*2^{\frac{1}{2}} - 8s + 0 + 0 - 4*2x + 12 + 0\\=&2ssqrt(2) - 2sqrt(2) + 4xsqrt(2) - 8s - 8x + 12\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return