There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(cosh(x))}^{ln(1 + {x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {cosh(x)}^{ln(x^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {cosh(x)}^{ln(x^{2} + 1)}\right)}{dx}\\=&({cosh(x)}^{ln(x^{2} + 1)}((\frac{(2x + 0)}{(x^{2} + 1)})ln(cosh(x)) + \frac{(ln(x^{2} + 1))(sinh(x))}{(cosh(x))}))\\=&\frac{2x{cosh(x)}^{ln(x^{2} + 1)}ln(cosh(x))}{(x^{2} + 1)} + \frac{{cosh(x)}^{ln(x^{2} + 1)}ln(x^{2} + 1)sinh(x)}{cosh(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !