Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(2{x}^{2} + 6x - 1)}{sqrt(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2x^{2}}{sqrt(x)} + \frac{6x}{sqrt(x)} - \frac{1}{sqrt(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2x^{2}}{sqrt(x)} + \frac{6x}{sqrt(x)} - \frac{1}{sqrt(x)}\right)}{dx}\\=&\frac{2*2x}{sqrt(x)} + \frac{2x^{2}*-\frac{1}{2}}{(x)(x)^{\frac{1}{2}}} + \frac{6}{sqrt(x)} + \frac{6x*-\frac{1}{2}}{(x)(x)^{\frac{1}{2}}} - \frac{-\frac{1}{2}}{(x)(x)^{\frac{1}{2}}}\\=&\frac{4x}{sqrt(x)} - x^{\frac{1}{2}} + \frac{6}{sqrt(x)} - \frac{3}{x^{\frac{1}{2}}} + \frac{1}{2x^{\frac{3}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return