There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1){e}^{(-(\frac{(1)}{(2)}){x}^{2})}}{({(2pi)}^{(\frac{(1)}{(2)})})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{(\frac{-1}{2}x^{2})}}{2^{\frac{1}{2}}p^{\frac{1}{2}}i^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{(\frac{-1}{2}x^{2})}}{2^{\frac{1}{2}}p^{\frac{1}{2}}i^{\frac{1}{2}}}\right)}{dx}\\=&\frac{({e}^{(\frac{-1}{2}x^{2})}((\frac{-1}{2}*2x)ln(e) + \frac{(\frac{-1}{2}x^{2})(0)}{(e)}))}{2^{\frac{1}{2}}p^{\frac{1}{2}}i^{\frac{1}{2}}}\\=&\frac{-x{e}^{(\frac{-1}{2}x^{2})}}{2^{\frac{1}{2}}p^{\frac{1}{2}}i^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !