There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1){e}^{(-(\frac{(x)}{(10)}))}}{(10)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{10}{e}^{(\frac{-1}{10}x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{10}{e}^{(\frac{-1}{10}x)}\right)}{dx}\\=&\frac{1}{10}({e}^{(\frac{-1}{10}x)}((\frac{-1}{10})ln(e) + \frac{(\frac{-1}{10}x)(0)}{(e)}))\\=&\frac{-{e}^{(\frac{-1}{10}x)}}{100}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !