Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{2}(1 - {e}^{(\frac{(x - 1)}{a})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - x^{2}{e}^{(\frac{x}{a} - \frac{1}{a})} + x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - x^{2}{e}^{(\frac{x}{a} - \frac{1}{a})} + x^{2}\right)}{dx}\\=& - 2x{e}^{(\frac{x}{a} - \frac{1}{a})} - x^{2}({e}^{(\frac{x}{a} - \frac{1}{a})}((\frac{1}{a} + 0)ln(e) + \frac{(\frac{x}{a} - \frac{1}{a})(0)}{(e)})) + 2x\\=& - 2x{e}^{(\frac{x}{a} - \frac{1}{a})} - \frac{x^{2}{e}^{(\frac{x}{a} - \frac{1}{a})}}{a} + 2x\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return