Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ sin(x)(1 - {e}^{(\frac{2(x - 1)}{a})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(x) - {e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x) - {e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x)\right)}{dx}\\=&cos(x) - ({e}^{(\frac{2x}{a} - \frac{2}{a})}((\frac{2}{a} + 0)ln(e) + \frac{(\frac{2x}{a} - \frac{2}{a})(0)}{(e)}))sin(x) - {e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x)\\=&cos(x) - \frac{2{e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x)}{a} - {e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cos(x) - \frac{2{e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x)}{a} - {e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x)\right)}{dx}\\=&-sin(x) - \frac{2({e}^{(\frac{2x}{a} - \frac{2}{a})}((\frac{2}{a} + 0)ln(e) + \frac{(\frac{2x}{a} - \frac{2}{a})(0)}{(e)}))sin(x)}{a} - \frac{2{e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x)}{a} - ({e}^{(\frac{2x}{a} - \frac{2}{a})}((\frac{2}{a} + 0)ln(e) + \frac{(\frac{2x}{a} - \frac{2}{a})(0)}{(e)}))cos(x) - {e}^{(\frac{2x}{a} - \frac{2}{a})}*-sin(x)\\=&-sin(x) - \frac{4{e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x)}{a^{2}} - \frac{4{e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x)}{a} + {e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return