There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(x + 1)}^{20}{(x + 2)}^{30}{\frac{1}{(x + 5)}}^{30}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{(x + 1)^{20}(x + 2)^{30}}{(x + 5)^{30}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{(x + 1)^{20}(x + 2)^{30}}{(x + 5)^{30}}\right)}{dx}\\=&\frac{(20(x + 1)^{19}(1 + 0))(x + 2)^{30}}{(x + 5)^{30}} + \frac{(x + 1)^{20}(30(x + 2)^{29}(1 + 0))}{(x + 5)^{30}} + (x + 1)^{20}(x + 2)^{30}(\frac{-30(1 + 0)}{(x + 5)^{31}})\\=&\frac{20(x + 1)^{19}(x + 2)^{30}}{(x + 5)^{30}} + \frac{30(x + 2)^{29}(x + 1)^{20}}{(x + 5)^{30}} - \frac{30(x + 1)^{20}(x + 2)^{30}}{(x + 5)^{31}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !