There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (x + 5){x}^{(\frac{2}{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{x}^{\frac{2}{3}} + 5{x}^{\frac{2}{3}}\right)}{dx}\\=&{x}^{\frac{2}{3}} + x({x}^{\frac{2}{3}}((0)ln(x) + \frac{(\frac{2}{3})(1)}{(x)})) + 5({x}^{\frac{2}{3}}((0)ln(x) + \frac{(\frac{2}{3})(1)}{(x)}))\\=&\frac{5x^{\frac{2}{3}}}{3} + \frac{10}{3x^{\frac{1}{3}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{5x^{\frac{2}{3}}}{3} + \frac{10}{3x^{\frac{1}{3}}}\right)}{dx}\\=&\frac{5*\frac{2}{3}}{3x^{\frac{1}{3}}} + \frac{10*\frac{-1}{3}}{3x^{\frac{4}{3}}}\\=&\frac{10}{9x^{\frac{1}{3}}} - \frac{10}{9x^{\frac{4}{3}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !