There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{x}^{2}}{(e^{x} + e^{-x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(e^{x} + e^{-x})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(e^{x} + e^{-x})}\right)}{dx}\\=&(\frac{-(e^{x} + e^{-x}*-1)}{(e^{x} + e^{-x})^{2}})x^{2} + \frac{2x}{(e^{x} + e^{-x})}\\=&\frac{-x^{2}e^{x}}{(e^{x} + e^{-x})^{2}} + \frac{x^{2}e^{-x}}{(e^{x} + e^{-x})^{2}} + \frac{2x}{(e^{x} + e^{-x})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !