There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{1}{({(aln(x))}^{(a + 1)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (aln(x))^{(-a - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (aln(x))^{(-a - 1)}\right)}{dx}\\=&((aln(x))^{(-a - 1)}((0 + 0)ln(aln(x)) + \frac{(-a - 1)(\frac{a}{(x)})}{(aln(x))}))\\=&\frac{-a(aln(x))^{(-a - 1)}}{xln(x)} - \frac{(aln(x))^{(-a - 1)}}{xln(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !