There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-1}{(a{(ln(x))}^{a})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-{ln(x)}^{(-a)}}{a}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-{ln(x)}^{(-a)}}{a}\right)}{dx}\\=&\frac{-({ln(x)}^{(-a)}((0)ln(ln(x)) + \frac{(-a)(\frac{1}{(x)})}{(ln(x))}))}{a}\\=&\frac{{ln(x)}^{(-a)}}{xln(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !