Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(3{x}^{4} - 6a{x}^{2} + 3{a}^{2})}{({(3{x}^{2} + a)}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3x^{4}}{(3x^{2} + a)^{2}} - \frac{6ax^{2}}{(3x^{2} + a)^{2}} + \frac{3a^{2}}{(3x^{2} + a)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3x^{4}}{(3x^{2} + a)^{2}} - \frac{6ax^{2}}{(3x^{2} + a)^{2}} + \frac{3a^{2}}{(3x^{2} + a)^{2}}\right)}{dx}\\=&3(\frac{-2(3*2x + 0)}{(3x^{2} + a)^{3}})x^{4} + \frac{3*4x^{3}}{(3x^{2} + a)^{2}} - 6(\frac{-2(3*2x + 0)}{(3x^{2} + a)^{3}})ax^{2} - \frac{6a*2x}{(3x^{2} + a)^{2}} + 3(\frac{-2(3*2x + 0)}{(3x^{2} + a)^{3}})a^{2} + 0\\=&\frac{-36x^{5}}{(3x^{2} + a)^{3}} + \frac{12x^{3}}{(3x^{2} + a)^{2}} + \frac{72ax^{3}}{(3x^{2} + a)^{3}} - \frac{12ax}{(3x^{2} + a)^{2}} - \frac{36a^{2}x}{(3x^{2} + a)^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return