There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{\frac{1}{3}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{\frac{1}{3}}\right)}{dx}\\=&({x}^{\frac{1}{3}}((0)ln(x) + \frac{(\frac{1}{3})(1)}{(x)}))\\=&\frac{1}{3x^{\frac{2}{3}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{3x^{\frac{2}{3}}}\right)}{dx}\\=&\frac{\frac{-2}{3}}{3x^{\frac{5}{3}}}\\=&\frac{-2}{9x^{\frac{5}{3}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !