There are 1 questions in this calculation: for each question, the 2 derivative of z is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{e^{z}}{(1 - z)}\ with\ respect\ to\ z:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{e^{z}}{(-z + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e^{z}}{(-z + 1)}\right)}{dz}\\=&(\frac{-(-1 + 0)}{(-z + 1)^{2}})e^{z} + \frac{e^{z}}{(-z + 1)}\\=&\frac{e^{z}}{(-z + 1)^{2}} + \frac{e^{z}}{(-z + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{e^{z}}{(-z + 1)^{2}} + \frac{e^{z}}{(-z + 1)}\right)}{dz}\\=&(\frac{-2(-1 + 0)}{(-z + 1)^{3}})e^{z} + \frac{e^{z}}{(-z + 1)^{2}} + (\frac{-(-1 + 0)}{(-z + 1)^{2}})e^{z} + \frac{e^{z}}{(-z + 1)}\\=&\frac{2e^{z}}{(-z + 1)^{3}} + \frac{2e^{z}}{(-z + 1)^{2}} + \frac{e^{z}}{(-z + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !