There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(1 + \frac{3}{x})}^{\frac{1}{3}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (\frac{3}{x} + 1)^{\frac{1}{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (\frac{3}{x} + 1)^{\frac{1}{3}}\right)}{dx}\\=&(\frac{\frac{1}{3}(\frac{3*-1}{x^{2}} + 0)}{(\frac{3}{x} + 1)^{\frac{2}{3}}})\\=&\frac{-1}{(\frac{3}{x} + 1)^{\frac{2}{3}}x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !