There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{xsqrt({x}^{2} - 1)}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{3}xsqrt(x^{2} - 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{3}xsqrt(x^{2} - 1)\right)}{dx}\\=&\frac{1}{3}sqrt(x^{2} - 1) + \frac{\frac{1}{3}x(2x + 0)*\frac{1}{2}}{(x^{2} - 1)^{\frac{1}{2}}}\\=&\frac{sqrt(x^{2} - 1)}{3} + \frac{x^{2}}{3(x^{2} - 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !