There are 1 questions in this calculation: for each question, the 1 derivative of X is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{1}{(1 + {e}^{X})}\ with\ respect\ to\ X:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{({e}^{X} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{({e}^{X} + 1)}\right)}{dX}\\=&(\frac{-(({e}^{X}((1)ln(e) + \frac{(X)(0)}{(e)})) + 0)}{({e}^{X} + 1)^{2}})\\=&\frac{-{e}^{X}}{({e}^{X} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !