There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 6{x}^{2}{\frac{1}{(2 - x)}}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{6x^{2}}{(-x + 2)^{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{6x^{2}}{(-x + 2)^{4}}\right)}{dx}\\=&6(\frac{-4(-1 + 0)}{(-x + 2)^{5}})x^{2} + \frac{6*2x}{(-x + 2)^{4}}\\=&\frac{24x^{2}}{(-x + 2)^{5}} + \frac{12x}{(-x + 2)^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !