There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {\frac{1}{(1 + x)}}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{(x + 1)^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{(x + 1)^{3}}\right)}{dx}\\=&(\frac{-3(1 + 0)}{(x + 1)^{4}})\\=&\frac{-3}{(x + 1)^{4}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-3}{(x + 1)^{4}}\right)}{dx}\\=&-3(\frac{-4(1 + 0)}{(x + 1)^{5}})\\=&\frac{12}{(x + 1)^{5}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !