There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {{e}^{x}}^{2} - 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(2x)} - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(2x)} - 1\right)}{dx}\\=&({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) + 0\\=&2{e}^{(2x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2{e}^{(2x)}\right)}{dx}\\=&2({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))\\=&4{e}^{(2x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !