There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {(1 + {x}^{2})}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{8} + 4x^{6} + 6x^{4} + 4x^{2} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{8} + 4x^{6} + 6x^{4} + 4x^{2} + 1\right)}{dx}\\=&8x^{7} + 4*6x^{5} + 6*4x^{3} + 4*2x + 0\\=&8x^{7} + 24x^{5} + 24x^{3} + 8x\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 8x^{7} + 24x^{5} + 24x^{3} + 8x\right)}{dx}\\=&8*7x^{6} + 24*5x^{4} + 24*3x^{2} + 8\\=&56x^{6} + 120x^{4} + 72x^{2} + 8\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !