There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 4{(x - 4)}^{(\frac{2}{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4(x - 4)^{\frac{2}{3}}\right)}{dx}\\=&4((x - 4)^{\frac{2}{3}}((0)ln(x - 4) + \frac{(\frac{2}{3})(1 + 0)}{(x - 4)}))\\=&\frac{8(x - 4)^{\frac{2}{3}}}{3(x - 4)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{8(x - 4)^{\frac{2}{3}}}{3(x - 4)}\right)}{dx}\\=&\frac{8(\frac{\frac{2}{3}(1 + 0)}{(x - 4)^{\frac{1}{3}}})}{3(x - 4)} + \frac{8(x - 4)^{\frac{2}{3}}(\frac{-(1 + 0)}{(x - 4)^{2}})}{3}\\=&\frac{-8}{9(x - 4)^{\frac{4}{3}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !