Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 8{(x - 5)}^{(\frac{2}{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 8(x - 5)^{\frac{2}{3}}\right)}{dx}\\=&8((x - 5)^{\frac{2}{3}}((0)ln(x - 5) + \frac{(\frac{2}{3})(1 + 0)}{(x - 5)}))\\=&\frac{16(x - 5)^{\frac{2}{3}}}{3(x - 5)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{16(x - 5)^{\frac{2}{3}}}{3(x - 5)}\right)}{dx}\\=&\frac{16(\frac{\frac{2}{3}(1 + 0)}{(x - 5)^{\frac{1}{3}}})}{3(x - 5)} + \frac{16(x - 5)^{\frac{2}{3}}(\frac{-(1 + 0)}{(x - 5)^{2}})}{3}\\=&\frac{-16}{9(x - 5)^{\frac{4}{3}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return