There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {x}^{3}cos(2)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{4}cos(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{4}cos(2)\right)}{dx}\\=&4x^{3}cos(2) + x^{4}*-sin(2)*0\\=&4x^{3}cos(2)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4x^{3}cos(2)\right)}{dx}\\=&4*3x^{2}cos(2) + 4x^{3}*-sin(2)*0\\=&12x^{2}cos(2)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 12x^{2}cos(2)\right)}{dx}\\=&12*2xcos(2) + 12x^{2}*-sin(2)*0\\=&24xcos(2)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 24xcos(2)\right)}{dx}\\=&24cos(2) + 24x*-sin(2)*0\\=&24cos(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !