Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xsin(x)cos(x){e}^{x}ln(x)arcsin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{e}^{x}ln(x)sin(x)cos(x)arcsin(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{e}^{x}ln(x)sin(x)cos(x)arcsin(x)\right)}{dx}\\=&{e}^{x}ln(x)sin(x)cos(x)arcsin(x) + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))ln(x)sin(x)cos(x)arcsin(x) + \frac{x{e}^{x}sin(x)cos(x)arcsin(x)}{(x)} + x{e}^{x}ln(x)cos(x)cos(x)arcsin(x) + x{e}^{x}ln(x)sin(x)*-sin(x)arcsin(x) + x{e}^{x}ln(x)sin(x)cos(x)(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&{e}^{x}ln(x)sin(x)cos(x)arcsin(x) + x{e}^{x}ln(x)sin(x)cos(x)arcsin(x) + {e}^{x}sin(x)cos(x)arcsin(x) + x{e}^{x}ln(x)cos^{2}(x)arcsin(x) - x{e}^{x}ln(x)sin^{2}(x)arcsin(x) + \frac{x{e}^{x}ln(x)sin(x)cos(x)}{(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return