There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{3} - 1560{x}^{2} + 540804x + 274\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3} - 1560x^{2} + 540804x + 274\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3} - 1560x^{2} + 540804x + 274\right)}{dx}\\=&3x^{2} - 1560*2x + 540804 + 0\\=&3x^{2} - 3120x + 540804\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3x^{2} - 3120x + 540804\right)}{dx}\\=&3*2x - 3120 + 0\\=&6x - 3120\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !