There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln(sqrt(1 - x))sqrt({e}^{x})}{sqrt(arccos(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(sqrt(-x + 1))sqrt({e}^{x})}{sqrt(arccos(x))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(sqrt(-x + 1))sqrt({e}^{x})}{sqrt(arccos(x))}\right)}{dx}\\=&\frac{(-1 + 0)*\frac{1}{2}sqrt({e}^{x})}{(sqrt(-x + 1))(-x + 1)^{\frac{1}{2}}sqrt(arccos(x))} + \frac{ln(sqrt(-x + 1))({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))*\frac{1}{2}}{({e}^{x})^{\frac{1}{2}}sqrt(arccos(x))} + \frac{ln(sqrt(-x + 1))sqrt({e}^{x})*-(\frac{-(1)}{((1 - (x)^{2})^{\frac{1}{2}})})*\frac{1}{2}}{(arccos(x))(arccos(x))^{\frac{1}{2}}}\\=&\frac{-sqrt({e}^{x})}{2(-x + 1)^{\frac{1}{2}}sqrt(-x + 1)sqrt(arccos(x))} + \frac{{e}^{(\frac{1}{2}x)}ln(sqrt(-x + 1))}{2sqrt(arccos(x))} + \frac{ln(sqrt(-x + 1))sqrt({e}^{x})}{2(-x^{2} + 1)^{\frac{1}{2}}arccos^{\frac{3}{2}}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !