There are 1 questions in this calculation: for each question, the 1 derivative of R is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 100{({R}^{2} + {(2PFL)}^{2})}^{(\frac{-1}{2})}\ with\ respect\ to\ R:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{100}{(R^{2} + 4P^{2}F^{2}L^{2})^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{100}{(R^{2} + 4P^{2}F^{2}L^{2})^{\frac{1}{2}}}\right)}{dR}\\=&100(\frac{\frac{-1}{2}(2R + 0)}{(R^{2} + 4P^{2}F^{2}L^{2})^{\frac{3}{2}}})\\=&\frac{-100R}{(R^{2} + 4P^{2}F^{2}L^{2})^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !