There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ {(x - 1)}^{6}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x - 1)^{6}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x - 1)^{6}\right)}{dx}\\=&(6(x - 1)^{5}(1 + 0))\\=&6x^{5} - 30x^{4} + 60x^{3} - 60x^{2} + 30x - 6\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 6x^{5} - 30x^{4} + 60x^{3} - 60x^{2} + 30x - 6\right)}{dx}\\=&6*5x^{4} - 30*4x^{3} + 60*3x^{2} - 60*2x + 30 + 0\\=&30x^{4} - 120x^{3} + 180x^{2} - 120x + 30\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 30x^{4} - 120x^{3} + 180x^{2} - 120x + 30\right)}{dx}\\=&30*4x^{3} - 120*3x^{2} + 180*2x - 120 + 0\\=&120x^{3} - 360x^{2} + 360x - 120\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !