There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ x + \frac{x}{({x}^{2} - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x + \frac{x}{(x^{2} - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x + \frac{x}{(x^{2} - 1)}\right)}{dx}\\=&1 + (\frac{-(2x + 0)}{(x^{2} - 1)^{2}})x + \frac{1}{(x^{2} - 1)}\\=& - \frac{2x^{2}}{(x^{2} - 1)^{2}} + \frac{1}{(x^{2} - 1)} + 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{2x^{2}}{(x^{2} - 1)^{2}} + \frac{1}{(x^{2} - 1)} + 1\right)}{dx}\\=& - 2(\frac{-2(2x + 0)}{(x^{2} - 1)^{3}})x^{2} - \frac{2*2x}{(x^{2} - 1)^{2}} + (\frac{-(2x + 0)}{(x^{2} - 1)^{2}}) + 0\\=&\frac{8x^{3}}{(x^{2} - 1)^{3}} - \frac{6x}{(x^{2} - 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !