Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(ln(ax + 1))}{(ln(2)x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(ax + 1)}{xln(2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(ax + 1)}{xln(2)}\right)}{dx}\\=&\frac{-ln(ax + 1)}{x^{2}ln(2)} + \frac{-0ln(ax + 1)}{xln^{2}(2)(2)} + \frac{(a + 0)}{xln(2)(ax + 1)}\\=&\frac{-ln(ax + 1)}{x^{2}ln(2)} + \frac{a}{(ax + 1)xln(2)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return