Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {tan({x}^{arcsin(x)})}^{ln(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {tan({x}^{arcsin(x)})}^{ln(x)}\right)}{dx}\\=&({tan({x}^{arcsin(x)})}^{ln(x)}((\frac{1}{(x)})ln(tan({x}^{arcsin(x)})) + \frac{(ln(x))(sec^{2}({x}^{arcsin(x)})(({x}^{arcsin(x)}(((\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}))ln(x) + \frac{(arcsin(x))(1)}{(x)}))))}{(tan({x}^{arcsin(x)}))}))\\=&\frac{{tan({x}^{arcsin(x)})}^{ln(x)}ln(tan({x}^{arcsin(x)}))}{x} + \frac{{x}^{arcsin(x)}{tan({x}^{arcsin(x)})}^{ln(x)}ln^{2}(x)sec^{2}({x}^{arcsin(x)})}{(-x^{2} + 1)^{\frac{1}{2}}tan({x}^{arcsin(x)})} + \frac{{x}^{arcsin(x)}{tan({x}^{arcsin(x)})}^{ln(x)}ln(x)arcsin(x)sec^{2}({x}^{arcsin(x)})}{xtan({x}^{arcsin(x)})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return