There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{{x}^{3}{(x - 1)}^{2}}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}x^{5} - x^{4} + \frac{1}{2}x^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}x^{5} - x^{4} + \frac{1}{2}x^{3}\right)}{dx}\\=&\frac{1}{2}*5x^{4} - 4x^{3} + \frac{1}{2}*3x^{2}\\=&\frac{5x^{4}}{2} - 4x^{3} + \frac{3x^{2}}{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{5x^{4}}{2} - 4x^{3} + \frac{3x^{2}}{2}\right)}{dx}\\=&\frac{5*4x^{3}}{2} - 4*3x^{2} + \frac{3*2x}{2}\\=&10x^{3} - 12x^{2} + 3x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !