There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ log_{4}^{e^{x}} - {x}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{4}^{e^{x}} - x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{4}^{e^{x}} - x^{2}\right)}{dx}\\=&(\frac{(\frac{(e^{x})}{(e^{x})} - \frac{(0)log_{4}^{e^{x}}}{(4)})}{(ln(4))}) - 2x\\=&\frac{1}{ln(4)} - 2x\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{ln(4)} - 2x\right)}{dx}\\=&\frac{-0}{ln^{2}(4)(4)} - 2\\=& - 2\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - 2\right)}{dx}\\=& - 0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - 0\right)}{dx}\\=& - 0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !